Author: | Anton Trunov |
---|---|
Date: | April 15, 2021 |
Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive.
Let's prove addition is commutative
commutative addncommutative addnx, y:natx + y = y + xy:nat0 + y = y + 0y:natforall n : nat, n + y = y + n -> n.+1 + y = y + n.+1
The goal at this point is y = y + 0
(if we take
reduction into account), but to prove it we
need induction again!
y:nat0 + y = y + 0y:natforall n : nat, n + y = y + n -> n.+1 + y = y + n.+1y:naty = y + 0y:natforall n : nat, n + y = y + n -> n.+1 + y = y + n.+1y:natIHy:y = y + 0y.+1 = y.+1 + 0y:natforall n : nat, n + y = y + n -> n.+1 + y = y + n.+1y:natIHy:y = y + 0y.+1 = y.+1y:natforall n : nat, n + y = y + n -> n.+1 + y = y + n.+1y:natforall n : nat, n + y = y + n -> n.+1 + y = y + n.+1
But, of course, it's better to factor this
proof out into a separate lemma addn0
. Sometimes
this nested induction is not really avoidable
and it might not make sense to make a new lemma,
then nested induction is something to consider.
commutative addn
Let us prove this lemma idiomatically
by rewrite addSn IHx -addSnnS. Qed.x:natIHx:forall y : nat, x + y = y + xy:natx.+1 + y = y + x.+1
The first
tactical in the proof above lets
us not focus on trivial goals and break our proof
flow and apply rewrite addn0
only to the first
subgoal generated by the elim
tactic.
Let turn out attention to the proverbial
factorial function. Its standard implementation is
non-tail-recursive which is not a problem for us,
of course, given that the call stack is not going
to grow large. Still, let's see a common pattern
arising in this context. Mathcomp defines a
postfix notation to mean factorial
:
Let's define our own tail-recursive version of the factorial function.
Fixpoint factorial_helper (n : nat) (acc : nat) : nat := if n is n'.+1 then factorial_helper n' (n * acc) else acc. (** The iterative implementation of the factorial function: *) Definition factorial_iter (n : nat) : nat := factorial_helper n 1. (** Let's prove our iterative implementation of factorial is correct. *)n:natfactorial_iter n = n`!n:natfactorial_iter n = n`!factorial_iter 0 = 0`!forall n : nat, factorial_iter n = n`! -> factorial_iter n.+1 = (n.+1)`!factorial_iter 0 = 0`!forall n : nat, factorial_iter n = n`! -> factorial_iter n.+1 = (n.+1)`!forall n : nat, factorial_iter n = n`! -> factorial_iter n.+1 = (n.+1)`!n:natIHn:factorial_iter n = n`!factorial_iter n.+1 = (n.+1)`!
To proceed let's simplify the goal
n:natIHn:factorial_iter n = n`!factorial_helper n.+1 1 = (n.+1)`!n:natIHn:factorial_iter n = n`!factorial_helper n (n.+1 * 1) = (n.+1)`!n:natIHn:factorial_iter n = n`!factorial_helper n n.+1 = (n.+1)`!
At this point it should be clear that the
induction hypothesis is not directly applicable in
the goal and we should unfold factorial_iter
in
it too.
n:natIHn:factorial_helper n 1 = n`!
factorial_helper n n.+1 = (n.+1)`!
And now we are stuck here: our induction
hypothesis is not general enough to help us
because it has the second argument to
factorial_helper
fixed to 1
but we need it to
work for n.+1
too.
At this point we abort the proof and generalize our lemma statement. This is a common pattern in proofs by induction.
Abort.
We need to state our lemma in a way which does
not fix the second argument, i.e. we replace it
with a variable acc
and formulate the
specification of factorial_helper_correct
in
terms of its both arguments. A little thinking
reveals that statement: we start with acc
and
mutliply it repeatedly by n
, n-1
, etc.
n, acc:natfactorial_helper n acc = n`! * accn, acc:natfactorial_helper n acc = n`! * accacc, n:natIHn:factorial_helper n acc = n`! * accfactorial_helper n (n.+1 * acc) = (n.+1)`! * acc
We seem to be stuck again because acc
in the
induction hypothesis does not match (n.+1 * acc)
in the goal. This happens because we again fix the
accumulator too early and make our induction
hypothesis too specialized. Let's start over and
generalize our induction hypothesis.
n, acc:nat
factorial_helper n acc = n`! * acc
We now move acc
from the proof context to the goal, thus generalizing it.
n:natforall acc : nat, factorial_helper n acc = n`! * accforall acc : nat, factorial_helper 0 acc = 0`! * accforall n : nat, (forall acc : nat, factorial_helper n acc = n`! * acc) -> forall acc : nat, factorial_helper n.+1 acc = (n.+1)`! * accforall acc : nat, factorial_helper 0 acc = 0`! * accforall n : nat, (forall acc : nat, factorial_helper n acc = n`! * acc) -> forall acc : nat, factorial_helper n.+1 acc = (n.+1)`! * accacc:natfactorial_helper 0 acc = 0`! * accforall n : nat, (forall acc : nat, factorial_helper n acc = n`! * acc) -> forall acc : nat, factorial_helper n.+1 acc = (n.+1)`! * accforall n : nat, (forall acc : nat, factorial_helper n acc = n`! * acc) -> forall acc : nat, factorial_helper n.+1 acc = (n.+1)`! * accn:natIHn:forall acc : nat, factorial_helper n acc = n`! * accacc:natfactorial_helper n (n.+1 * acc) = (n.+1)`! * acc
Now our induction hypothesis is universally
quantified over acc
and hence can be specialized
to any value of the acc
parameter. The rewrite
tactic can take care of this specialization to
n.+1 * acc
.
by rewrite factS mulnCA mulnA.n:natIHn:forall acc : nat, factorial_helper n acc = n`! * accacc:natn`! * (n.+1 * acc) = (n.+1)`! * accn, acc:natfactorial_helper n acc = n`! * acc
After a little refactoring we get the
following proof. Notice that we can combine steps
like move: acc
followed by elim: n
into one
step: elim: n acc
which is a clear indicator
that your induction hypothesis needs
generalization for the proof to go through. It
would not be idiomatic to generalize induction
hypotheses unnecessarily.
by rewrite IHn factS mulnCA mulnA. Qed.n:natIHn:forall acc : nat, factorial_helper n acc = n`! * accacc:natfactorial_helper n (n.+1 * acc) = (n.+1)`! * acc
And now we are able to prove our main correctness lemma:
n:natfactorial_iter n = n`!n:natfactorial_iter n = n`!by rewrite factorial_helper_correct muln1. Qed.n:natfactorial_helper n 1 = n`!
Using the Search
command can be tricky
sometimes. For example, Search (1 * _)
won't
find what is needed to simplify 1 * n
into n
(and these are not definitionally equal).
The search results are unhelpful because this sort
of lemma is formulated using the left_id
defintion. Since looking for left_id
would
return a bit too many lemmas, let's narrow the
search space down by telling the Search
command
to restrict the search result to containing _both_
[left_id] and [muln] definitions:
To learn more about this and related issues checkout this wiki page: https://github.com/math-comp/math-comp/wiki/Search.
Let's define a recursive Fibonacci function for the illustration purposes (yes, it's factorial and Fibonacci in one lecture, a combo!).
Our first attempt at defining the Fibonacci function is going to fail, perhaps surprisingly.
Coq cannot figure out we are using structural
recursion here, because it does not see n''.+1
is a subterm of n
but it simply needs a hint.
Here is the hint: name a structural subterm
explicitly using the as
-annotation
Fixpoint fib (n : nat) : nat :=
if n is (n''.+1 as n').+1 then
fib n'' + fib n'
else n.
But before we proceed we are going to need to
change the reduction behavior of fib
. Let's
illustrate the issue by the means of an example.
Section Illustrate_simpl_nomatch. Variable n : nat.n:natfib n.+2 = 0n:natfib n.+2 = 0n:natfib n + match n with | 0 => n.+1 | n''.+1 => fib n'' + fib n end = 0
When doing proofs one usually does not want
reduction to make the goals harder to read and
understand and exposing a match
-expression like
this certainly makes it harder to read and
understand. So fib n.+1
should not get
simplified.
Abort.
Let's forbid simplification of fib
if it
ends up like that, exposing the underlying
match
-expression.
Arguments fib n : simpl nomatch.n:natfib n.+2 = 0n:natfib n.+2 = 0n:natfib n + fib n.+1 = 0
This goal is what we want!
Abort. End Illustrate_simpl_nomatch.
The results of the Arguments
command does
not survive sections so we have to repeat it here.
(Actually there is a few things that don't survive
sections, notations most notable).
Arguments fib n : simpl nomatch.
For the sake of demonstration of certain proof techniques let us define an iterative version of the Fibonacci function.
Fixpoint fib_iter (n : nat) (f0 f1 : nat) : nat := if n is n'.+1 then fib_iter n' f1 (f0 + f1) else f0. Arguments fib_iter : simpl nomatch.
Sometimes one just needs a one-step simplification lemma, so it can be done manually in our case. Although, the Equations plugin provides this functionality out-of-box.
n, f0, f1:natfib_iter n.+1 f0 f1 = fib_iter n f1 (f0 + f1)by []. Qed.n, f0, f1:natfib_iter n.+1 f0 f1 = fib_iter n f1 (f0 + f1)
We are going to need the following helper
lemma which says fib_iter
behave like the
Fibonacci function.
n, f0, f1:natfib_iter n.+2 f0 f1 = fib_iter n f0 f1 + fib_iter n.+1 f0 f1n, f0, f1:natfib_iter n.+2 f0 f1 = fib_iter n f0 f1 + fib_iter n.+1 f0 f1
Notice we generalize the induction hypothesis here.
n:natIHn:forall f0 f1 : nat, fib_iter n.+2 f0 f1 = fib_iter n f0 f1 + fib_iter n.+1 f0 f1f0, f1:natfib_iter n.+3 f0 f1 = fib_iter n.+1 f0 f1 + fib_iter n.+2 f0 f1n:natIHn:forall f0 f1 : nat, fib_iter n.+2 f0 f1 = fib_iter n f0 f1 + fib_iter n.+1 f0 f1f0, f1:natfib_iter n.+2 f1 (f0 + f1) = fib_iter n.+1 f0 f1 + fib_iter n.+2 f0 f1done. Qed.n:natIHn:forall f0 f1 : nat, fib_iter n.+2 f0 f1 = fib_iter n f0 f1 + fib_iter n.+1 f0 f1f0, f1:natfib_iter n f1 (f0 + f1) + fib_iter n.+1 f1 (f0 + f1) = fib_iter n.+1 f0 f1 + fib_iter n.+2 f0 f1
Now we can try proving the main correctness lemmas.
n:natfib_iter n 0 1 = fib nn:natfib_iter n 0 1 = fib nn:natIHn:fib_iter n 0 1 = fib nfib_iter n 1 (0 + 1) = fib n.+1
We have used //=
switch here -- it combines
//
and /=
into one
And we are stuck again. The induction hypothesis is not general enough.
Informally, regular induction works using the
induction step from the previous value of n
to
go to the current and it work fine for functions
with a simple recursion pattern, but fib
uses
two previous values of n
to compute the next
Fibonacci number and this calls for a more
powerful induction pattern.
Abort.
To make the proof go through we can design a custom induction principle. This induction principle repeats, in a sense, the structure of the (recursive) Fibonacci function.
Lemma nat_ind2 (P : nat -> Prop) : P 0 -> P 1 -> (forall n, P n -> P n.+1 -> P n.+2) -> forall n, P n.
Compare this to the regular induction principle:
Lemma nat_ind (P : nat -> Prop) : P 0 -> (forall n, P n -> P n.+1) -> forall n, P n.
Now, let us prove nat_ind2
:
P:nat -> PropP 0 -> P 1 -> (forall n : nat, P n -> P n.+1 -> P n.+2) -> forall n : nat, P nP:nat -> PropP 0 -> P 1 -> (forall n : nat, P n -> P n.+1 -> P n.+2) -> forall n : nat, P nP:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natP n
If we did regular induction we would get
ourselves into the same trap as with
fib_iter_correct
lemma. So let's prove a
_stronger_ goal instead. Why stronger goal?
Because a stronger goal results in a stronger
induction hypothesis!
Let's use the have
tactic to do that. This
tactic lets us to forward reasoning as opposed
to backward reasoning we use with the apply
tactic.
P:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:nat
P n /\ P n.+1
P:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natP n /\ P n.+1 -> P n
have
generates two subgoals:
- It makes us prove the new statement we specified.
- It makes us prove the new statement implies our old goal.
P:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natP n /\ P n.+1P:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natP n /\ P n.+1 -> P nP:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natIHn:P nIHSn:P n.+1P n.+1 /\ P n.+2P:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natP n /\ P n.+1 -> P nP:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natIHn:P nIHSn:P n.+1P n.+2P:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natP n /\ P n.+1 -> P nby case.P:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natP n /\ P n.+1 -> P n
Let's refactor the proof into a more idiomatic one
using the suff
(suffices
) tactic which is like have
but swaps the two subgoals.
P:nat -> PropP 0 -> P 1 -> (forall n : nat, P n -> P n.+1 -> P n.+2) -> forall n : nat, P nelim: n=> // n [IHn IHSn]; split=> //; exact: Istep.P:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natP n /\ P n.+1
An even shorter version would look something like so.
P:nat -> PropP 0 -> P 1 -> (forall n : nat, P n -> P n.+1 -> P n.+2) -> forall n : nat, P nby elim: n=> // n [/Istep pn12] /[dup]/pn12.P:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natP n /\ P n.+1
Let us replay it one more time with some manual breaks in between.
P:nat -> PropP 0 -> P 1 -> (forall n : nat, P n -> P n.+1 -> P n.+2) -> forall n : nat, P nP:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natP n /\ P n.+1P:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natP n /\ P n.+1 -> P n.+1 /\ P n.+2P:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natpn12:P n.+1 -> P n.+2P n.+1 -> P n.+1 /\ P n.+2P:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natpn12:P n.+1 -> P n.+2P n.+1 -> P n.+1 -> P n.+1 /\ P n.+2done. Qed.P:nat -> Propp0:P 0p1:P 1Istep:forall n : nat, P n -> P n.+1 -> P n.+2n:natpn12:P n.+1 -> P n.+2P n.+2 -> P n.+1 -> P n.+1 /\ P n.+2
We have used the /[dup]
action to duplicate
the assumption at the top of the goal stack.
Now we can apply the custom induction
principle we just proved using
elim/ind_principle
version of the elim
tactic.
Notice that the slash symbol here does not mean
"view" as in move /View
.
n:natfib_iter n 0 1 = fib nn:natfib_iter n 0 1 = fib nby rewrite fib_iter_sum IHn1 IHn2. Qed.n:natIHn1:fib_iter n 0 1 = fib nIHn2:fib_iter n.+1 0 1 = fib n.+1fib_iter n.+2 0 1 = fib n.+2
Note: fib_iter_correct
can be proven using
the suffices
tactic too:
fib_iter n 0 1 = fib n /\ fib_iter n.+1 0 1 = fib n.+1
.
Now we are going to cover an even more general induction principle called complete induction.x It's also called:
- strong induction;
- well-founded induction;
- course-of-values induction.
The statement is called ltn_ind
and looks like so:
(forall m, (forall k : nat, (k < m) -> P k) -> P m) -> forall n, P n.
This means that to prove property P
holds for an arbitrary
natural number n
, one can assume P
holds for any k
smaller than n
.
Let's use this induction principle to prove
fib_iter
correct one more time
n:natfib_iter n 0 1 = fib nn:natfib_iter n 0 1 = fib nn:natIHn:forall m : nat, m < n -> fib_iter m 0 1 = fib mfib_iter n 0 1 = fib nn:natIHn:forall m : nat, m < n -> fib_iter m 0 1 = fib mfib_iter n 0 1 = fib nn:natIHn:forall m : nat, m < n.+1 -> fib_iter m 0 1 = fib mfib_iter n.+1 0 1 = fib n.+1n:natIHn:forall m : nat, m < n.+2 -> fib_iter m 0 1 = fib mfib_iter n.+2 0 1 = fib n.+2n:natIHn:forall m : nat, m < n.+2 -> fib_iter m 0 1 = fib mfib_iter n 0 1 + fib_iter n.+1 0 1 = fib n.+2n:natIHn:forall m : nat, m < n.+2 -> fib_iter m 0 1 = fib mfib n + fib n.+1 = fib n.+2n:natIHn:forall m : nat, m < n.+2 -> fib_iter m 0 1 = fib mn.+1 < n.+2n:natIHn:forall m : nat, m < n.+2 -> fib_iter m 0 1 = fib mn < n.+2n:natIHn:forall m : nat, m < n.+2 -> fib_iter m 0 1 = fib mfib n + fib n.+1 = fib n.+2n:natIHn:forall m : nat, m < n.+2 -> fib_iter m 0 1 = fib mn.+1 < n.+2n:natIHn:forall m : nat, m < n.+2 -> fib_iter m 0 1 = fib mn < n.+2n:natIHn:forall m : nat, m < n.+2 -> fib_iter m 0 1 = fib mn.+1 < n.+2n:natIHn:forall m : nat, m < n.+2 -> fib_iter m 0 1 = fib mn < n.+2n:natIHn:forall m : nat, m < n.+2 -> fib_iter m 0 1 = fib mn.+1 < n.+2n:natIHn:forall m : nat, m < n.+2 -> fib_iter m 0 1 = fib mn < n.+2done.n:natIHn:forall m : nat, m < n.+2 -> fib_iter m 0 1 = fib mn < n.+2n:natfib_iter n 0 1 = fib n
A more idiomatic proof would look something like this.
by rewrite fib_iter_sum !IHn. Qed.n:natIHn:forall m : nat, m < n.+2 -> fib_iter m 0 1 = fib mfib_iter n.+2 0 1 = fib n.+2
/=
: simplification action;//=
: solve trivial subgoals and simplify;elim/custom_induction_principle
: we specify the induction principle to use;have
,suff
(suffices
): forward reasoning;rewrite !E
: rewrite 1 or more times with the equationE
until no more rewrites are possible.