From Coq Require Import Program. From QuickChick Require Import QuickChick.Global Set Bullet Behavior "None". Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive.
Module Insertion. Section InsertionSort. Variable T : eqType. Variable leT : rel T. Implicit Types x y z : T. Implicit Types s t u : seq T.
Insert an element e
into a sorted list s
Fixpoint insert e s : seq T :=
if s is x :: s' then
if leT e x then
e :: s
else
x :: (insert e s')
else [:: e].
Sort input list s
Fixpoint sort s : seq T :=
if s is x :: s' then
insert x (sort s')
else
[::].
Now we'd like to prove sort
functionally
correct. "Functionally" means here "as a relation
between the input and output". Notice that we
don't treat the question of time/space complexity.
I'll use "correct" as a synonym for "functionally"
correct in the following discussion.
If you'd like to see how specify complexity, you might want to check "A Machine-checked Proof of the Average-case Complexity of Quicksort in Coq" paper by van der Weegen and McKinna (2008).
What does mean for a sorting algorithm to be correct?
It could have been a requirement that the output of the algorithm is _sorted_.
Let's give this notation a precise meaning. We
call the corresponding predicate sorted'
because
we will later refine the definition into something
more general that helps us a lot with inductive
proofs.
This fails because x2 :: s'
is not a
structural subterm of s
.
We just need to add as
annotation:
Fixpoint sorted' s : bool :=
if s is x1 :: ((x2 :: s') as tail) then
leT x1 x2 && (sorted' tail)
else true.
The obvious definition we came up with is not
very easy to work with. We would see it later when
trying to prove that insert
function preserves
sortedness.
So instead we are going to use Mathcomp's
sorted
predicate, which is based on the notion
of path
.
path (<=) x p
means x <= x1 <= x2 <= ... <=
xn
, where p = [:: x1; x2; ... xn]
and <=
is a
binary relation.
is much easier to prove (exercise):
T:eqTypeleT:rel Tx:Ts:seq Tsorted leT (x :: s) -> sorted leT sAdmitted.T:eqTypeleT:rel Tx:Ts:seq Tsorted leT (x :: s) -> sorted leT s
It's easy to see that requiring just sortedness of the output list is a rather weak specification -- a function always returning an empty list would also be correct:
Definition fake_sort s : seq T := [::].T:eqTypeleT:rel Ts:seq Tsorted leT (fake_sort s)by []. Qed.T:eqTypeleT:rel Ts:seq Tsorted leT (fake_sort s)
What we actually care about is to keep the
elements together with their repective number of
occurences, i.e. forall x : T, count (pred1 x) s
= count (pred1 x) (sort s)
, where pred1 x
means
fun y => x == y
. This expresses the notion of
_permutation_ of two lists.
There is one more concern w.r.t. the spec we
came up with so far -- it's non-computable as it
requires us to compute count
-expressions over a
possibly infinite type T
, because we quantify
the whole statement over T
. Intuitively, we know
that for any two lists we can compute if one is a
permutation of the other when we have decidable
equality over the type of elements.
Mathcomp introduces a computable of notion of
equivalence up to permutation: perm_eq
defined
as follows:
perm_eq
is equivalent to
all [pred x | (count_mem x) s1 == (count_mem x) s2] s1 && all [pred x | (count_mem x) s1 == (count_mem x) s2] s2 .. coq:: Print count_mem.
Moreover, any two lists s1
and s2
that are
a permutation of each other, give us the following
property which is universal for _any_ predicate
p
: forall p : pred T, count p s1 = count p s2
expressed as a [reflect]-predicate:
Upshot: Our final notion of correctness of
sorting algorithms can be expressed semi-formally
as follows sorted (sort s) /\ perm_eq s (sort
s)
.
Let's try proving these properties for the insertion sort algorithm we implemented
(** * The output is sorted *)T:eqTypeleT:rel Ts:seq Tsorted leT (sort s)T:eqTypeleT:rel Ts:seq Tsorted leT (sort s)Abort.T:eqTypeleT:rel Tx:Ts:seq TIHs:sorted leT (sort s)sorted leT (insert x (sort s))
We need the fact that insert
preserves
sortedness. Let's prove it as a standalone lemma.
T:eqTypeleT:rel Te:Ts:seq Tsorted leT s -> sorted leT (insert e s)T:eqTypeleT:rel Te:Ts:seq Tsorted leT s -> sorted leT (insert e s)T:eqTypeleT:rel Te, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)sorted leT (x1 :: s) -> sorted leT (insert e (x1 :: s))T:eqTypeleT:rel Te, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path leT x1 s -> sorted leT (if leT e x1 then [:: e, x1 & s] else x1 :: insert e s)T:eqTypeleT:rel Te, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 ssorted leT (if leT e x1 then [:: e, x1 & s] else x1 :: insert e s)T:eqTypeleT:rel Te, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 se_le_x1:leT e x1sorted leT [:: e, x1 & s]T:eqTypeleT:rel Te, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 se_gt_x1:leT e x1 = falsesorted leT (x1 :: insert e s)T:eqTypeleT:rel Te, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 se_le_x1:leT e x1sorted leT [:: e, x1 & s]T:eqTypeleT:rel Te, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 se_gt_x1:leT e x1 = falsesorted leT (x1 :: insert e s)(* Notice that we lack one essential fact about `leT` -- totality *) Abort. Hypothesis leT_total : total leT.T:eqTypeleT:rel Te, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 se_gt_x1:leT e x1 = falsesorted leT (x1 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe:Ts:seq Tsorted leT s -> sorted leT (insert e s)T:eqTypeleT:rel TleT_total:total leTe:Ts:seq Tsorted leT s -> sorted leT (insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)sorted leT (x1 :: s) -> sorted leT (insert e (x1 :: s))T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 ssorted leT (if leT e x1 then [:: e, x1 & s] else x1 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 se_le_x1:leT e x1sorted leT [:: e, x1 & s]T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 se_gt_x1:leT e x1 = falsesorted leT (x1 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 se_le_x1:leT e x1sorted leT [:: e, x1 & s]T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 se_gt_x1:leT e x1 = falsesorted leT (x1 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 se_gt_x1:leT e x1 = falsesorted leT (x1 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 se_gt_x1:leT e x1 = falseleT e x1 || leT x1 e -> sorted leT (x1 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 sfalse || leT x1 e -> sorted leT (x1 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:sorted leT s -> sorted leT (insert e s)path_x1_s:path leT x1 sx1_le_e:leT x1 epath leT x1 (insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq Tx1_le_e:leT x1 esorted leT (insert e s) -> path leT x1 (insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Tx1_le_e:leT x1 ex2:Ts:seq Tsorted leT (insert e (x2 :: s)) -> path leT x1 (insert e (x2 :: s))T:eqTypeleT:rel TleT_total:total leTe, x1:Tx1_le_e:leT x1 ex2:Ts:seq Tsorted leT (if leT e x2 then [:: e, x2 & s] else x2 :: insert e s) -> path leT x1 (if leT e x2 then [:: e, x2 & s] else x2 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Tx1_le_e:leT x1 ex2:Ts:seq TleT e x2 -> sorted leT [:: e, x2 & s] -> path leT x1 [:: e, x2 & s]T:eqTypeleT:rel TleT_total:total leTe, x1:Tx1_le_e:leT x1 ex2:Ts:seq TleT e x2 = false -> sorted leT (x2 :: insert e s) -> path leT x1 (x2 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Tx1_le_e:leT x1 ex2:Ts:seq TleT e x2 -> sorted leT [:: e, x2 & s] -> path leT x1 [:: e, x2 & s]T:eqTypeleT:rel TleT_total:total leTe, x1:Tx1_le_e:leT x1 ex2:Ts:seq TleT e x2 = false -> sorted leT (x2 :: insert e s) -> path leT x1 (x2 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Tx1_le_e:leT x1 ex2:Ts:seq TleT e x2 -> leT e x2 && path leT x2 s -> [&& leT x1 e, leT e x2 & path leT x2 s]T:eqTypeleT:rel TleT_total:total leTe, x1:Tx1_le_e:leT x1 ex2:Ts:seq TleT e x2 = false -> sorted leT (x2 :: insert e s) -> path leT x1 (x2 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Tx1_le_e:leT x1 ex2:Ts:seq TleT x1 e && trueT:eqTypeleT:rel TleT_total:total leTe, x1:Tx1_le_e:leT x1 ex2:Ts:seq TleT e x2 = false -> sorted leT (x2 :: insert e s) -> path leT x1 (x2 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Tx1_le_e:leT x1 ex2:Ts:seq TleT e x2 = false -> sorted leT (x2 :: insert e s) -> path leT x1 (x2 :: insert e s)
We are moving in circles here, let' steps back and generalize the problem.
Abort.T:eqTypeleT:rel TleT_total:total leTz, e:Ts:seq TleT z e -> path leT z s -> path leT z (insert e s)T:eqTypeleT:rel TleT_total:total leTz, e:Ts:seq TleT z e -> path leT z s -> path leT z (insert e s)T:eqTypeleT:rel TleT_total:total leTe:Ts:seq Tforall z, leT z e -> path leT z s -> path leT z (insert e s)T:eqTypeleT:rel TleT_total:total leTe, z:TleT z e -> true -> leT z e && trueT:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:TleT z e -> path leT z (x1 :: s) -> path leT z (insert e (x1 :: s))T:eqTypeleT:rel TleT_total:total leTe, z:TleT z e -> true -> leT z e && trueT:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:TleT z e -> path leT z (x1 :: s) -> path leT z (insert e (x1 :: s))T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:TleT z e -> path leT z (x1 :: s) -> path leT z (insert e (x1 :: s))T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:Tz_le_e:leT z epath leT z (x1 :: s) -> path leT z (insert e (x1 :: s))T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:Tz_le_e:leT z eleT z x1 && path leT x1 s -> path leT z (if leT e x1 then [:: e, x1 & s] else x1 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:Tz_le_e:leT z ez_le_x1:leT z x1path_x1_s:path leT x1 spath leT z (if leT e x1 then [:: e, x1 & s] else x1 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:Tz_le_e:leT z ez_le_x1:leT z x1path_x1_s:path leT x1 sleT e x1 -> path leT z [:: e, x1 & s]T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:Tz_le_e:leT z ez_le_x1:leT z x1path_x1_s:path leT x1 sleT e x1 = false -> path leT z (x1 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:Tz_le_e:leT z ez_le_x1:leT z x1path_x1_s:path leT x1 sleT e x1 -> path leT z [:: e, x1 & s]T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:Tz_le_e:leT z ez_le_x1:leT z x1path_x1_s:path leT x1 sleT e x1 = false -> path leT z (x1 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:Tz_le_e:leT z ez_le_x1:leT z x1path_x1_s:path leT x1 sleT e x1 = false -> path leT z (x1 :: insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:Tz_le_e:leT z ez_le_x1:leT z x1path_x1_s:path leT x1 se_gt_x1:leT e x1 = falseleT z x1 && path leT x1 (insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:Tz_le_e:leT z ez_le_x1:leT z x1path_x1_s:path leT x1 se_gt_x1:leT e x1 = falsetrue && path leT x1 (insert e s)T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:Tz_le_e:leT z ez_le_x1:leT z x1path_x1_s:path leT x1 se_gt_x1:leT e x1 = falseleT e x1 || leT x1 e -> true && path leT x1 (insert e s)exact: IHs. Qed.T:eqTypeleT:rel TleT_total:total leTe, x1:Ts:seq TIHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)z:Tz_le_e:leT z ez_le_x1:leT z x1path_x1_s:path leT x1 sx1_le_e:leT x1 epath leT x1 (insert e s)
Optional exercise: refactor the proof above into an idiomatic one.
T:eqTypeleT:rel TleT_total:total leTe:Ts:seq Tsorted leT s -> sorted leT (insert e s)T:eqTypeleT:rel TleT_total:total leTe:Ts:seq Tsorted leT s -> sorted leT (insert e s)T:eqTypeleT:rel TleT_total:total leTe:Ts:seq Tmatch s with | [::] => true | x :: s' => path leT x s' end -> match insert e s with | [::] => true | x :: s' => path leT x s' endT:eqTypeleT:rel TleT_total:total leTe, x:Ts:seq Tpath leT x s -> match insert e (x :: s) with | [::] => true | x :: s' => path leT x s' endT:eqTypeleT:rel TleT_total:total leTe, x:Ts:seq Tpath leT x s -> match (if leT e x then [:: e, x & s] else x :: insert e s) with | [::] => true | x :: s' => path leT x s' endT:eqTypeleT:rel TleT_total:total leTe, x:Ts:seq TleT e x = false -> path leT x s -> path leT x (insert e s)T:eqTypeleT:rel TleT_total:total leTe, x:Ts:seq Te_gt_x:leT e x = falsepath leT x s -> path leT x (insert e s)T:eqTypeleT:rel TleT_total:total leTe, x:Ts:seq Te_gt_x:leT e x = falseleT x eby rewrite e_gt_x /= => ->. Qed.T:eqTypeleT:rel TleT_total:total leTe, x:Ts:seq Te_gt_x:leT e x = falseleT e x || leT x e -> leT x e
Exercise
T:eqTypeleT:rel TleT_total:total leTs:seq Tsorted leT (sort s)Admitted. End InsertionSort. Arguments sort {T} _ _. Arguments insert {T} _ _ _. Section SortIsPermutation. Variable T : eqType. Variables leT : rel T. (** a helper lemma (exercise) *)T:eqTypeleT:rel TleT_total:total leTs:seq Tsorted leT (sort s)T:eqTypeleT:rel Tp:pred Te:Ts:seq Tcount p (insert leT e s) = p e + count p sby elim: s => //= x s; case: ifP=> _ //= ->; rewrite addnCA. Qed.T:eqTypeleT:rel Tp:pred Te:Ts:seq Tcount p (insert leT e s) = p e + count p sT:eqTypeleT:rel Ts:seq Tperm_eql (sort leT s) sT:eqTypeleT:rel Ts:seq Tperm_eql (sort leT s) sT:eqTypeleT:rel Ts:seq Tperm_eql (sort leT s) s(** exercise *)T:eqTypeleT:rel Ts:seq Tcount^~ (sort leT s) =1 count^~ sby rewrite count_insert IHs. Qed.T:eqTypeleT:rel Tx:Ts:seq TIHs:count^~ (sort leT s) =1 count^~ sp:pred Tcount p (insert leT x (sort leT s)) = p x + count p s
This is why we state perm_sort
lemma using
perm_eql
-- it can be used as an equation like
so
T:eqTypeleT:rel Ts:seq Tsort leT s =i sby apply: perm_mem; rewrite perm_sort. Qed.T:eqTypeleT:rel Ts:seq Tsort leT s =i sT:eqTypeleT:rel Ts:seq Tuniq (sort leT s) = uniq sby apply: perm_uniq; rewrite perm_sort. Qed. End SortIsPermutation. Section SortProperties. Variable T : eqType. Variables leT : rel T.T:eqTypeleT:rel Ts:seq Tuniq (sort leT s) = uniq sT:eqTypeleT:rel Ts:seq Tsorted leT s -> sort leT s = sT:eqTypeleT:rel Ts:seq Tsorted leT s -> sort leT s = sT:eqTypeleT:rel Tx1:Ts:seq TIHs:sorted leT s -> sort leT s = sS:sorted leT (x1 :: s)sort leT (x1 :: s) = x1 :: sT:eqTypeleT:rel Tx1:Ts:seq TS:sorted leT (x1 :: s)insert leT x1 s = x1 :: sT:eqTypeleT:rel Tx1:Ts:seq Tpath leT x1 s -> insert leT x1 s = x1 :: sby case/andP=> ->. Qed. End SortProperties. End Insertion.T:eqTypeleT:rel Tx1, x2:Ts:seq TleT x1 x2 && path leT x2 s -> (if leT x1 x2 then [:: x1, x2 & s] else x2 :: insert leT x1 s) = [:: x1, x2 & s]
Module Merge. Section MergeSortDef. Context {disp : unit} {T : orderType disp}. Implicit Types s t : seq T. Fixpoint split s : seq T * seq T := match s with | [::] => (s, s) | [:: x] => (s, [::]) | [:: x, y & s] => let '(t1, t2) := split s in (x :: t1, y :: t2) end. Arguments split : simpl nomatch.disp:()%typeT:orderType disps2, s1, s:seq T1 < size s -> split s = (s1, s2) -> size s1 < size sAdmitted.disp:()%typeT:orderType disps2, s1, s:seq T1 < size s -> split s = (s1, s2) -> size s1 < size sdisp:()%typeT:orderType disps1, s2, s:seq T1 < size s -> split s = (s1, s2) -> size s2 < size sAdmitted.disp:()%typeT:orderType disps1, s2, s:seq T1 < size s -> split s = (s1, s2) -> size s2 < size s
fix
-combinator idiomFixpoint merge s t : seq T := let fix merge_s t := match s, t with | [::], _ => t | _, [::] => s | x :: s', y :: t' => if (x <= y)%O then x :: merge s' t else y :: merge_s t' end in merge_s t.
There is a clever way to implement merge-sort as a system of recursive functions but we are not going to go this direction here.
A little trick: one can disable termination checker
Unset Guard Checking.
Now one can define the usual top-down merge-sort function:
Fixpoint sort_unguarded s : seq T := match s with | [::] => s | [:: _] => s | _ => let '(s1, s2) := split s in merge (sort_unguarded s1) (sort_unguarded s2) end.Set Guard Checking.
Here, the nested fix
design pattern would not work
Fixpoint sort s {measure (size s)} : seq T := match s with | [::] => s | [:: _] => s | _ => let '(s1, s2) := split s in merge (sort s1) (sort s2) end.disp:()%typeT:orderType disps:seq Tsort:forall s0, (size s0 < size s)%coq_nat -> seq TH0:[::] <> sH:forall wildcard' : T, [:: wildcard'] <> ss1, s2:seq THeq_anonymous:(s1, s2) = split s(size s1 < size s)%coq_natby case: s sort H0 H Heq_anonymous=> // x1 [] // _ _ /(_ x1). Qed.disp:()%typeT:orderType disps:seq Tsort:forall s0, (size s0 < size s)%coq_nat -> seq TH0:[::] <> sH:forall wildcard' : T, [:: wildcard'] <> ss1, s2:seq THeq_anonymous:(s1, s2) = split s1 < size sdisp:()%typeT:orderType disps:seq Tsort:forall s0, (size s0 < size s)%coq_nat -> seq TH0:[::] <> sH:forall wildcard' : T, [:: wildcard'] <> ss1, s2:seq THeq_anonymous:(s1, s2) = split s(size s2 < size s)%coq_natby case: s sort H0 H Heq_anonymous=> // x1 [] // _ _ /(_ x1). Qed.disp:()%typeT:orderType disps:seq Tsort:forall s0, (size s0 < size s)%coq_nat -> seq TH0:[::] <> sH:forall wildcard' : T, [:: wildcard'] <> ss1, s2:seq THeq_anonymous:(s1, s2) = split s1 < size sby []. Qed. End MergeSortDef.disp:()%typeT:orderType disps:seq Tsort:forall s0, (size s0 < size s)%coq_nat -> seq TH:TH0:seq TH1:TH2:seq T(forall wildcard' : T, [:: wildcard'] <> [:: H, H1 & H2]) /\ [::] <> [:: H, H1 & H2]
orderType
instancesSection MergeSortTest.End MergeSortTest. Section MergeSortCorrect. Context {disp : unit} {T : orderType disp}. Implicit Types s t : seq T.
(Optional) exercise
disp:()%typeT:orderType disps:seq Tsorted <=%O (sort s)Admitted. End MergeSortCorrect. End Merge.disp:()%typeT:orderType disps:seq Tsorted <=%O (sort s)
Acc
-predicateLet's see why Merge.sort
works:
Acc R x
can be read as "x is accessible
under relation R if all elements staying in
relation R with it are also accessible"
Coq allows us do structural recursion on a
term of type Acc
which lives in Prop
while
building a term of a type living in Type
.
(structural recursion involves pattern-matching).
But the accessibility predicate is defined to be
non-informative (one constructor!).
This allows one do lots of interesting stuff, including to counting up
Section AccFrom. Variable (p : pred nat).
The acc_from
predicate lets us count up: we
are not allowed to use acc_from
to drive
computation (extract information from proofs of
propositions to make computationally relevant
terms), but you can define a recursive function
from a type like this to a type in Type
and the
termination checker is totally (pun intended)
happy with it. We'll see this sort of example at
the end.
Inductive acc_from i : Prop := | AccNow of p i | AccLater of acc_from i.+1. End AccFrom.
Check out the corresponding induction principle.
Section SimpleExamples.
Let's do a couple of proofs to get the gist of acc_from
acc_from (eq_op^~ 42) 0acc_from (eq_op^~ 42) 0by apply: AccNow. Qed.acc_from (eq_op^~ 42) 42
acc_from (eq_op^~ 42) 43 -> Falseacc_from (eq_op^~ 42) 43 -> False
If you start proving the current goal
directly, you will quickly get stuck because your
goal is too specialised. Clearly, you need
induction over the accessibility predicate, but
elim
messes up your base case (look at the type
of acc_from_ind
).
forall i : nat, i == 42 -> Falseforall i : nat, acc_from (eq_op^~ 42) i.+1 -> False -> False(* the first subgoal is unprovable *) Abort.forall i : nat, i == 42 -> Falseforall i : nat, acc_from (eq_op^~ 42) i.+1 -> False -> False
We could try and create a more useful
induction principle for our case but we might as
well just use a low-level tactic fix
which
translates directly to Gallina's fixed-point
combinator.
acc_from (eq_op^~ 42) 43 -> Falseacc_from (eq_op^~ 42) 43 -> Falseinacc:acc_from (eq_op^~ 42) 43 -> Falseacc_from (eq_op^~ 42) 43 -> Falseinacc:acc_from (eq_op^~ 42) 43 -> Falseacc_from (eq_op^~ 42) 43 -> False
To recursively call inacc
on a structurally
smaller argument we need to case analyse the top
of the goal stack:
inacc:acc_from (eq_op^~ 42) 43 -> False
43 == 42 -> False
inacc:acc_from (eq_op^~ 42) 43 -> Falseacc_from (eq_op^~ 42) 44 -> False
The base case is easy now:
inacc:acc_from (eq_op^~ 42) 43 -> False43 == 42 -> Falseinacc:acc_from (eq_op^~ 42) 43 -> Falseacc_from (eq_op^~ 42) 44 -> Falseinacc:acc_from (eq_op^~ 42) 43 -> Falseacc_from (eq_op^~ 42) 44 -> False
But here we are stuck.
Abort.
So we generalize the goal to make the proof go through.
forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> Falseforall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> Falseinacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> Falseforall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> Falseinacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> Falseforall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> Falseinacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> Falsex:natx_gt42:42 < xacc_from (eq_op^~ 42) x -> Falseinacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> Falsex:natx_gt42:42 < xE:x = 42Falseinacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> Falsex:natx_gt42:42 < xacc_from (eq_op^~ 42) x.+1 -> Falseinacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> Falsex:natx_gt42:42 < xE:x = 42Falseinacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> Falsex:natx_gt42:42 < xacc_from (eq_op^~ 42) x.+1 -> Falseinacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> Falsex:natx_gt42:42 < xacc_from (eq_op^~ 42) x.+1 -> Falseby apply: (ltn_trans x_gt42). Qed. End SimpleExamples.x:natx_gt42:42 < x42 < x.+1
Section Find. Variable p : pred nat.p:pred nat(exists n : nat, p n) -> {m : nat | p m}p:pred nat(exists n : nat, p n) -> {m : nat | p m}p:pred natexp:exists n : nat, p n{m : nat | p m}p:pred natexp:exists n : nat, p nacc_from p 0p:pred natexp:exists n : nat, p nacc_from p 0 -> {m : nat | p m}
acc_from
lives in Prop
, so we are allowed
to destruct exp
in this context, see below.
p:pred natexp:exists n : nat, p nacc_from p 0p:pred natexp:exists n : nat, p nacc_from p 0 -> {m : nat | p m}p:pred natn:natp n -> acc_from p 0p:pred natexp:exists n : nat, p nacc_from p 0 -> {m : nat | p m}p:pred natn:natp (n + 0) -> acc_from p 0p:pred natexp:exists n : nat, p nacc_from p 0 -> {m : nat | p m}p:pred natj:natp (0 + j) -> acc_from p jp:pred natn:natIHn:forall n0 : nat, p (n + n0) -> acc_from p n0j:natp (n.+1 + j) -> acc_from p jp:pred natexp:exists n : nat, p nacc_from p 0 -> {m : nat | p m}p:pred natj:natp (0 + j) -> acc_from p jp:pred natn:natIHn:forall n0 : nat, p (n + n0) -> acc_from p n0j:natp (n.+1 + j) -> acc_from p jp:pred natexp:exists n : nat, p nacc_from p 0 -> {m : nat | p m}p:pred natn:natIHn:forall n0 : nat, p (n + n0) -> acc_from p n0j:natp (n.+1 + j) -> acc_from p jp:pred natexp:exists n : nat, p nacc_from p 0 -> {m : nat | p m}p:pred natn:natIHn:forall n0 : nat, p (n + n0) -> acc_from p n0j:natp (n + j.+1) -> acc_from p jp:pred natexp:exists n : nat, p nacc_from p 0 -> {m : nat | p m}p:pred natn:natIHn:forall n0 : nat, p (n + n0) -> acc_from p n0j:natp0:p (n + j.+1)acc_from p j.+1p:pred natexp:exists n : nat, p nacc_from p 0 -> {m : nat | p m}p:pred natn, j:natp0:p (n + j.+1)p (n + j.+1)p:pred natexp:exists n : nat, p nacc_from p 0 -> {m : nat | p m}p:pred natexp:exists n : nat, p nacc_from p 0 -> {m : nat | p m}p:pred natexp:exists n : nat, p nforall n : nat, acc_from p n -> {m : nat | p m}p:pred natexp:exists n : nat, p nfind_ex:forall n : nat, acc_from p n -> {m : nat | p m}m:natIHm:acc_from p m{m : nat | p m}p:pred natexp:exists n : nat, p nfind_ex:forall n : nat, acc_from p n -> {m : nat | p m}m:natIHm:acc_from p mpm:p m = true{m : nat | p m}p:pred natexp:exists n : nat, p nfind_ex:forall n : nat, acc_from p n -> {m : nat | p m}m:natIHm:acc_from p mpm:p m = false{m : nat | p m}p:pred natexp:exists n : nat, p nfind_ex:forall n : nat, acc_from p n -> {m : nat | p m}m:natIHm:acc_from p mpm:p m = true{m : nat | p m}p:pred natexp:exists n : nat, p nfind_ex:forall n : nat, acc_from p n -> {m : nat | p m}m:natIHm:acc_from p mpm:p m = false{m : nat | p m}p:pred natexp:exists n : nat, p nfind_ex:forall n : nat, acc_from p n -> {m : nat | p m}m:natIHm:acc_from p mpm:p m = false{m : nat | p m}p:pred natexp:exists n : nat, p nm:natIHm:acc_from p mpm:p m = falseacc_from p m.+1
Observe we can only destruct IHm
at this
point where we are tasked with building a proof
and not a computationally relevant term.
p:pred natexp:exists n : nat, p nm:natpm:p m = falsep m -> acc_from p m.+1p:pred natexp:exists n : nat, p nm:natpm:p m = falseacc_from p m.+1 -> acc_from p m.+1p:pred natexp:exists n : nat, p nm:natpm:p m = falsep m -> acc_from p m.+1p:pred natexp:exists n : nat, p nm:natpm:p m = falseacc_from p m.+1 -> acc_from p m.+1by []. Defined.p:pred natexp:exists n : nat, p nm:natpm:p m = falseacc_from p m.+1 -> acc_from p m.+1