Built with Alectryon, running Coq+SerAPI v8.13.0+0.13.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
From Coq Require Import Program.
From QuickChick Require Import QuickChick.
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing]
Global Set Bullet Behavior "None". Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive.

Sorting algorithms

Insertion sort

Module Insertion.
Section InsertionSort.

Variable T : eqType.
Variable leT : rel T.
Implicit Types x y z : T.
Implicit Types s t u : seq T.

Insert an element e into a sorted list s

Fixpoint insert e s : seq T :=
  if s is x :: s' then
    if leT e x then
      e :: s
    else
      x :: (insert e s')
  else [:: e].

Sort input list s

Fixpoint sort s : seq T :=
  if s is x :: s' then
    insert x (sort s')
  else
    [::].

Now we'd like to prove sort functionally correct. "Functionally" means here "as a relation between the input and output". Notice that we don't treat the question of time/space complexity. I'll use "correct" as a synonym for "functionally" correct in the following discussion.

If you'd like to see how specify complexity, you might want to check "A Machine-checked Proof of the Average-case Complexity of Quicksort in Coq" paper by van der Weegen and McKinna (2008).

What does mean for a sorting algorithm to be correct?

It could have been a requirement that the output of the algorithm is _sorted_.

Let's give this notation a precise meaning. We call the corresponding predicate sorted' because we will later refine the definition into something more general that helps us a lot with inductive proofs.

This fails because x2 :: s' is not a structural subterm of s.

The command has indeed failed with message: Recursive definition of sorted' is ill-formed. In environment T : eqType leT : rel T sorted' : seq T -> bool s : seq T x1 : T l : seq T x2 : T s' : seq T Recursive call to sorted' has principal argument equal to "x2 :: s'" instead of one of the following variables: "l" "s'". Recursive definition is: "fun s => match s with | [::] => true | [:: x1] => true | [:: x1, x2 & s'] => leT x1 x2 && sorted' (x2 :: s') end".

We just need to add as annotation:

Fixpoint sorted' s : bool :=
  if s is x1 :: ((x2 :: s') as tail) then
    leT x1 x2 && (sorted' tail)
  else true.

The obvious definition we came up with is not very easy to work with. We would see it later when trying to prove that insert function preserves sortedness.

So instead we are going to use Mathcomp's sorted predicate, which is based on the notion of path.

sorted = fun (T : Type) (e : rel T) (s : seq T) => match s with | [::] => true | x :: s' => path e x s' end : forall T : Type, rel T -> seq T -> bool Arguments sorted [T]%type_scope _ _%seq_scope
path = fun (T : Type) (e : rel T) => fix path (x : T) (p : seq T) {struct p} : bool := match p with | [::] => true | y :: p' => e x y && path y p' end : forall T : Type, rel T -> T -> seq T -> bool Arguments path {T}%type_scope _ _ _%seq_scope

path (<=) x p means x <= x1 <= x2 <= ... <= xn, where p = [:: x1; x2; ... xn] and <= is a binary relation.

With the modified definition the helper lemma

is much easier to prove (exercise):

T:eqType
leT:rel T
x:T
s:seq T

sorted leT (x :: s) -> sorted leT s
T:eqType
leT:rel T
x:T
s:seq T

sorted leT (x :: s) -> sorted leT s
Admitted.

It's easy to see that requiring just sortedness of the output list is a rather weak specification -- a function always returning an empty list would also be correct:

Definition fake_sort s : seq T := [::].

T:eqType
leT:rel T
s:seq T

sorted leT (fake_sort s)
T:eqType
leT:rel T
s:seq T

sorted leT (fake_sort s)
by []. Qed.

What we actually care about is to keep the elements together with their repective number of occurences, i.e. forall x : T, count (pred1 x) s = count (pred1 x) (sort s), where pred1 x means fun y => x == y. This expresses the notion of _permutation_ of two lists.

There is one more concern w.r.t. the spec we came up with so far -- it's non-computable as it requires us to compute count-expressions over a possibly infinite type T, because we quantify the whole statement over T. Intuitively, we know that for any two lists we can compute if one is a permutation of the other when we have decidable equality over the type of elements.

Mathcomp introduces a computable of notion of equivalence up to permutation: perm_eq defined as follows:

perm_eq = fun (T : eqType) (s1 s2 : seq T) => all [pred x | count_mem x s1 == count_mem x s2] (s1 ++ s2) : forall T : eqType, seq T -> seq T -> bool Arguments perm_eq {T} (_ _)%seq_scope

perm_eq is equivalent to

all [pred x | (count_mem x) s1 == (count_mem x) s2] s1
&&
all
    [pred x | (count_mem x) s1 == (count_mem x) s2] s2

    .. coq::

       Print count_mem.

Moreover, any two lists s1 and s2 that are a permutation of each other, give us the following property which is universal for _any_ predicate p: forall p : pred T, count p s1 = count p s2 expressed as a [reflect]-predicate:

permP : forall {T : eqType} {s1 s2 : seq T}, reflect (count^~ s1 =1 count^~ s2) (perm_eq s1 s2) permP is not universe polymorphic Arguments permP {T} {s1 s2}%seq_scope permP is opaque Expands to: Constant mathcomp.ssreflect.seq.permP

Upshot: Our final notion of correctness of sorting algorithms can be expressed semi-formally as follows sorted (sort s) /\ perm_eq s (sort s).

Let's try proving these properties for the insertion sort algorithm we implemented

(** * The output is sorted *)


T:eqType
leT:rel T
s:seq T

sorted leT (sort s)
T:eqType
leT:rel T
s:seq T

sorted leT (sort s)
T:eqType
leT:rel T
x:T
s:seq T
IHs:sorted leT (sort s)

sorted leT (insert x (sort s))
Abort.

We need the fact that insert preserves sortedness. Let's prove it as a standalone lemma.

T:eqType
leT:rel T
e:T
s:seq T

sorted leT s -> sorted leT (insert e s)
T:eqType
leT:rel T
e:T
s:seq T

sorted leT s -> sorted leT (insert e s)
T:eqType
leT:rel T
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)

sorted leT (x1 :: s) -> sorted leT (insert e (x1 :: s))
T:eqType
leT:rel T
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)

path leT x1 s -> sorted leT (if leT e x1 then [:: e, x1 & s] else x1 :: insert e s)
T:eqType
leT:rel T
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s

sorted leT (if leT e x1 then [:: e, x1 & s] else x1 :: insert e s)
T:eqType
leT:rel T
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s
e_le_x1:leT e x1

sorted leT [:: e, x1 & s]
T:eqType
leT:rel T
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s
e_gt_x1:leT e x1 = false
sorted leT (x1 :: insert e s)
T:eqType
leT:rel T
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s
e_le_x1:leT e x1

sorted leT [:: e, x1 & s]
T:eqType
leT:rel T
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s
e_gt_x1:leT e x1 = false
sorted leT (x1 :: insert e s)
T:eqType
leT:rel T
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s
e_gt_x1:leT e x1 = false

sorted leT (x1 :: insert e s)
(* Notice that we lack one essential fact about `leT` -- totality *) Abort. Hypothesis leT_total : total leT.
total = fun (T : Type) (R : rel T) => forall x y : T, R x y || R y x : forall T : Type, rel T -> Prop Arguments total [T]%type_scope _
T:eqType
leT:rel T
leT_total:total leT
e:T
s:seq T

sorted leT s -> sorted leT (insert e s)
T:eqType
leT:rel T
leT_total:total leT
e:T
s:seq T

sorted leT s -> sorted leT (insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)

sorted leT (x1 :: s) -> sorted leT (insert e (x1 :: s))
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s

sorted leT (if leT e x1 then [:: e, x1 & s] else x1 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s
e_le_x1:leT e x1

sorted leT [:: e, x1 & s]
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s
e_gt_x1:leT e x1 = false
sorted leT (x1 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s
e_le_x1:leT e x1

sorted leT [:: e, x1 & s]
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s
e_gt_x1:leT e x1 = false
sorted leT (x1 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s
e_gt_x1:leT e x1 = false

sorted leT (x1 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s
e_gt_x1:leT e x1 = false

leT e x1 || leT x1 e -> sorted leT (x1 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s

false || leT x1 e -> sorted leT (x1 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:sorted leT s -> sorted leT (insert e s)
path_x1_s:path leT x1 s
x1_le_e:leT x1 e

path leT x1 (insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
x1_le_e:leT x1 e

sorted leT (insert e s) -> path leT x1 (insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
x1_le_e:leT x1 e
x2:T
s:seq T

sorted leT (insert e (x2 :: s)) -> path leT x1 (insert e (x2 :: s))
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
x1_le_e:leT x1 e
x2:T
s:seq T

sorted leT (if leT e x2 then [:: e, x2 & s] else x2 :: insert e s) -> path leT x1 (if leT e x2 then [:: e, x2 & s] else x2 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
x1_le_e:leT x1 e
x2:T
s:seq T

leT e x2 -> sorted leT [:: e, x2 & s] -> path leT x1 [:: e, x2 & s]
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
x1_le_e:leT x1 e
x2:T
s:seq T
leT e x2 = false -> sorted leT (x2 :: insert e s) -> path leT x1 (x2 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
x1_le_e:leT x1 e
x2:T
s:seq T

leT e x2 -> sorted leT [:: e, x2 & s] -> path leT x1 [:: e, x2 & s]
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
x1_le_e:leT x1 e
x2:T
s:seq T
leT e x2 = false -> sorted leT (x2 :: insert e s) -> path leT x1 (x2 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
x1_le_e:leT x1 e
x2:T
s:seq T

leT e x2 -> leT e x2 && path leT x2 s -> [&& leT x1 e, leT e x2 & path leT x2 s]
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
x1_le_e:leT x1 e
x2:T
s:seq T
leT e x2 = false -> sorted leT (x2 :: insert e s) -> path leT x1 (x2 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
x1_le_e:leT x1 e
x2:T
s:seq T

leT x1 e && true
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
x1_le_e:leT x1 e
x2:T
s:seq T
leT e x2 = false -> sorted leT (x2 :: insert e s) -> path leT x1 (x2 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
x1_le_e:leT x1 e
x2:T
s:seq T

leT e x2 = false -> sorted leT (x2 :: insert e s) -> path leT x1 (x2 :: insert e s)

We are moving in circles here, let' steps back and generalize the problem.

Abort.

T:eqType
leT:rel T
leT_total:total leT
z, e:T
s:seq T

leT z e -> path leT z s -> path leT z (insert e s)
T:eqType
leT:rel T
leT_total:total leT
z, e:T
s:seq T

leT z e -> path leT z s -> path leT z (insert e s)
T:eqType
leT:rel T
leT_total:total leT
e:T
s:seq T

forall z, leT z e -> path leT z s -> path leT z (insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, z:T

leT z e -> true -> leT z e && true
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T
leT z e -> path leT z (x1 :: s) -> path leT z (insert e (x1 :: s))
T:eqType
leT:rel T
leT_total:total leT
e, z:T

leT z e -> true -> leT z e && true
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T
leT z e -> path leT z (x1 :: s) -> path leT z (insert e (x1 :: s))
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T

leT z e -> path leT z (x1 :: s) -> path leT z (insert e (x1 :: s))
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T
z_le_e:leT z e

path leT z (x1 :: s) -> path leT z (insert e (x1 :: s))
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T
z_le_e:leT z e

leT z x1 && path leT x1 s -> path leT z (if leT e x1 then [:: e, x1 & s] else x1 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T
z_le_e:leT z e
z_le_x1:leT z x1
path_x1_s:path leT x1 s

path leT z (if leT e x1 then [:: e, x1 & s] else x1 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T
z_le_e:leT z e
z_le_x1:leT z x1
path_x1_s:path leT x1 s

leT e x1 -> path leT z [:: e, x1 & s]
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T
z_le_e:leT z e
z_le_x1:leT z x1
path_x1_s:path leT x1 s
leT e x1 = false -> path leT z (x1 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T
z_le_e:leT z e
z_le_x1:leT z x1
path_x1_s:path leT x1 s

leT e x1 -> path leT z [:: e, x1 & s]
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T
z_le_e:leT z e
z_le_x1:leT z x1
path_x1_s:path leT x1 s
leT e x1 = false -> path leT z (x1 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T
z_le_e:leT z e
z_le_x1:leT z x1
path_x1_s:path leT x1 s

leT e x1 = false -> path leT z (x1 :: insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T
z_le_e:leT z e
z_le_x1:leT z x1
path_x1_s:path leT x1 s
e_gt_x1:leT e x1 = false

leT z x1 && path leT x1 (insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T
z_le_e:leT z e
z_le_x1:leT z x1
path_x1_s:path leT x1 s
e_gt_x1:leT e x1 = false

true && path leT x1 (insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T
z_le_e:leT z e
z_le_x1:leT z x1
path_x1_s:path leT x1 s
e_gt_x1:leT e x1 = false

leT e x1 || leT x1 e -> true && path leT x1 (insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x1:T
s:seq T
IHs:forall z, leT z e -> path leT z s -> path leT z (insert e s)
z:T
z_le_e:leT z e
z_le_x1:leT z x1
path_x1_s:path leT x1 s
x1_le_e:leT x1 e

path leT x1 (insert e s)
exact: IHs. Qed.

Optional exercise: refactor the proof above into an idiomatic one.

T:eqType
leT:rel T
leT_total:total leT
e:T
s:seq T

sorted leT s -> sorted leT (insert e s)
T:eqType
leT:rel T
leT_total:total leT
e:T
s:seq T

sorted leT s -> sorted leT (insert e s)
T:eqType
leT:rel T
leT_total:total leT
e:T
s:seq T

match s with | [::] => true | x :: s' => path leT x s' end -> match insert e s with | [::] => true | x :: s' => path leT x s' end
T:eqType
leT:rel T
leT_total:total leT
e, x:T
s:seq T

path leT x s -> match insert e (x :: s) with | [::] => true | x :: s' => path leT x s' end
T:eqType
leT:rel T
leT_total:total leT
e, x:T
s:seq T

path leT x s -> match (if leT e x then [:: e, x & s] else x :: insert e s) with | [::] => true | x :: s' => path leT x s' end
T:eqType
leT:rel T
leT_total:total leT
e, x:T
s:seq T

leT e x = false -> path leT x s -> path leT x (insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x:T
s:seq T
e_gt_x:leT e x = false

path leT x s -> path leT x (insert e s)
T:eqType
leT:rel T
leT_total:total leT
e, x:T
s:seq T
e_gt_x:leT e x = false

leT x e
T:eqType
leT:rel T
leT_total:total leT
e, x:T
s:seq T
e_gt_x:leT e x = false

leT e x || leT x e -> leT x e
by rewrite e_gt_x /= => ->. Qed.

Exercise

T:eqType
leT:rel T
leT_total:total leT
s:seq T

sorted leT (sort s)
T:eqType
leT:rel T
leT_total:total leT
s:seq T

sorted leT (sort s)
Admitted. End InsertionSort. Arguments sort {T} _ _. Arguments insert {T} _ _ _. Section SortIsPermutation. Variable T : eqType. Variables leT : rel T. (** a helper lemma (exercise) *)
T:eqType
leT:rel T
p:pred T
e:T
s:seq T

count p (insert leT e s) = p e + count p s
T:eqType
leT:rel T
p:pred T
e:T
s:seq T

count p (insert leT e s) = p e + count p s
by elim: s => //= x s; case: ifP=> _ //= ->; rewrite addnCA. Qed.
Notation perm_eql s1 s2 := (perm_eq s1 =1 perm_eq s2) Expands to: Notation mathcomp.ssreflect.seq.perm_eql
T:eqType
leT:rel T
s:seq T

perm_eql (sort leT s) s
T:eqType
leT:rel T
s:seq T

perm_eql (sort leT s) s
perm_rev: forall [T : eqType] (s : seq T), perm_eql (rev s) s
perm_rotr: forall [T : eqType] (n : nat) (s : seq T), perm_eql (rotr n s) s
perm_rot: forall [T : eqType] (n : nat) (s : seq T), perm_eql (rot n s) s
permPl: forall {T : eqType} {s1 s2 : seq T}, reflect (perm_eql s1 s2) (perm_eq s1 s2)
permEl: forall [T : eqType] [s1 s2 : seq T], perm_eql s1 s2 -> perm_eq s1 s2
perm_sort: forall [T : eqType] (leT : rel T) (s : seq T), perm_eql (path.sort leT s) s
perm_catC: forall [T : eqType] (s1 s2 : seq T), perm_eql (s1 ++ s2) (s2 ++ s1)
perm_rcons: forall [T : eqType] (x : T) (s : seq T), perm_eql (rcons s x) (x :: s)
perm_merge: forall [T : eqType] (leT : rel T) (s1 s2 : seq T), perm_eql (merge leT s1 s2) (s1 ++ s2)
perm_catl: forall [T : eqType] (s : seq T) [t1 t2 : seq T], perm_eq t1 t2 -> perm_eql (s ++ t1) (s ++ t2)
perm_catr: forall [T : eqType] [s1 s2 : seq T] (t : seq T), perm_eq s1 s2 -> perm_eql (s1 ++ t) (s2 ++ t)
perm_catAC: forall [T : eqType] (s1 s2 s3 : seq T), perm_eql ((s1 ++ s2) ++ s3) ((s1 ++ s3) ++ s2)
perm_catCA: forall [T : eqType] (s1 s2 s3 : seq T), perm_eql (s1 ++ s2 ++ s3) (s2 ++ s1 ++ s3)
perm_filterC: forall [T : eqType] (a : pred T) (s : seq T), perm_eql ([seq x <- s | a x] ++ [seq x <- s | predC a x]) s
perm_catACA: forall [T : eqType] (s1 s2 s3 s4 : seq T), perm_eql ((s1 ++ s2) ++ s3 ++ s4) ((s1 ++ s3) ++ s2 ++ s4)
allpairs_rconsr: forall [S : Type] [T : S -> Type] [R : eqType] (f : forall x : S, T x -> R) (s : seq S) (y0 : forall x : S, T x) (t : forall x : S, seq (T x)), perm_eql [seq f x y | x <- s, y <- rcons (t x) (y0 x)] ([seq f x y | x <- s, y <- t x] ++ [seq f x (y0 x) | x <- s])
perm_allpairs_consr: forall [S : Type] [T : S -> Type] [R : eqType] (f : forall x : S, T x -> R) (s : seq S) (y0 : forall x : S, T x) (t : forall x : S, seq (T x)), perm_eql [seq f x y | x <- s, y <- y0 x :: t x] ([seq f x (y0 x) | x <- s] ++ [seq f x y | x <- s, y <- t x])
perm_allpairs_catr: forall [S : Type] [T : S -> Type] [R : eqType] (f : forall x : S, T x -> R) (s : seq S) (t1 t2 : forall x : S, seq (T x)), perm_eql [seq f x y | x <- s, y <- t1 x ++ t2 x] ([seq f x y | x <- s, y <- t1 x] ++ [seq f x y | x <- s, y <- t2 x])
T:eqType
leT:rel T
s:seq T

perm_eql (sort leT s) s
T:eqType
leT:rel T
s:seq T

count^~ (sort leT s) =1 count^~ s
(** exercise *)
T:eqType
leT:rel T
x:T
s:seq T
IHs:count^~ (sort leT s) =1 count^~ s
p:pred T

count p (insert leT x (sort leT s)) = p x + count p s
by rewrite count_insert IHs. Qed.

This is why we state perm_sort lemma using perm_eql -- it can be used as an equation like so

T:eqType
leT:rel T
s:seq T

sort leT s =i s
T:eqType
leT:rel T
s:seq T

sort leT s =i s
by apply: perm_mem; rewrite perm_sort. Qed.
T:eqType
leT:rel T
s:seq T

uniq (sort leT s) = uniq s
T:eqType
leT:rel T
s:seq T

uniq (sort leT s) = uniq s
by apply: perm_uniq; rewrite perm_sort. Qed. End SortIsPermutation. Section SortProperties. Variable T : eqType. Variables leT : rel T.
T:eqType
leT:rel T
s:seq T

sorted leT s -> sort leT s = s
T:eqType
leT:rel T
s:seq T

sorted leT s -> sort leT s = s
T:eqType
leT:rel T
x1:T
s:seq T
IHs:sorted leT s -> sort leT s = s
S:sorted leT (x1 :: s)

sort leT (x1 :: s) = x1 :: s
T:eqType
leT:rel T
x1:T
s:seq T
S:sorted leT (x1 :: s)

insert leT x1 s = x1 :: s
T:eqType
leT:rel T
x1:T
s:seq T

path leT x1 s -> insert leT x1 s = x1 :: s
T:eqType
leT:rel T
x1, x2:T
s:seq T

leT x1 x2 && path leT x2 s -> (if leT x1 x2 then [:: x1, x2 & s] else x2 :: insert leT x1 s) = [:: x1, x2 & s]
by case/andP=> ->. Qed. End SortProperties. End Insertion.

Merge sort

Module Merge.

Section MergeSortDef.

Context {disp : unit} {T : orderType disp}.
Implicit Types s t : seq T.

Fixpoint split s : seq T * seq T :=
  match s with
  | [::] => (s, s)
  | [:: x] => (s, [::])
  | [:: x, y & s] =>
      let '(t1, t2) := split s in
      (x :: t1, y :: t2)
  end.

Arguments split : simpl nomatch.

disp:()%type
T:orderType disp
s2, s1, s:seq T

1 < size s -> split s = (s1, s2) -> size s1 < size s
disp:()%type
T:orderType disp
s2, s1, s:seq T

1 < size s -> split s = (s1, s2) -> size s1 < size s
Admitted.
disp:()%type
T:orderType disp
s1, s2, s:seq T

1 < size s -> split s = (s1, s2) -> size s2 < size s
disp:()%type
T:orderType disp
s1, s2, s:seq T

1 < size s -> split s = (s1, s2) -> size s2 < size s
Admitted.
The command has indeed failed with message: Cannot guess decreasing argument of fix.

Nested fix-combinator idiom

Fixpoint merge s t : seq T :=
  let fix merge_s t :=
    match s, t with
    | [::], _ => t
    | _, [::] => s
    | x :: s', y :: t' =>
      if (x <= y)%O
      then x :: merge s' t
      else y :: merge_s  t'
    end
  in merge_s t.


The command has indeed failed with message: Recursive definition of sort is ill-formed. In environment disp : () T : orderType disp sort : seq T -> seq T s : seq T s0 : T l : seq T s1 : T l0 : seq T s2 : seq T s3 : seq T Recursive call to sort has principal argument equal to "s2" instead of one of the following variables: "l" "l0". Recursive definition is: "fun s => match s with | [:: _, _ & _] => let '(s2, s3) := split s in merge (sort s2) (sort s3) | _ => s end".

There is a clever way to implement merge-sort as a system of recursive functions but we are not going to go this direction here.

The command has indeed failed with message: Recursive definition of sort is ill-formed. In environment disp : () T : orderType disp sort : seq T -> seq T s : seq T s0 : T l : seq T s1 : T l0 : seq T s2 : seq T s3 : seq T Recursive call to sort has principal argument equal to "s2" instead of one of the following variables: "l" "l0". Recursive definition is: "fun s => match s with | [:: _, _ & _] => let '(s2, s3) := split s in merge (sort s2) (sort s3) | _ => s end".

A little trick: one can disable termination checker

check_guarded: true check_positive: true check_universes: true cumulative sprop: false definitional uip: false
Unset Guard Checking.
check_guarded: false check_positive: true check_universes: true cumulative sprop: false definitional uip: false

Now one can define the usual top-down merge-sort function:

Fixpoint sort_unguarded s : seq T :=
  match s with
  | [::] => s
  | [:: _] => s
  | _ => let '(s1, s2) := split s in
         merge (sort_unguarded s1) (sort_unguarded s2)
  end.
Section Variables: disp : () T : orderType disp Axioms: sort_unguarded is assumed to be guarded.
Set Guard Checking.

Here, the nested fix design pattern would not work

Fixpoint sort s {measure (size s)} : seq T  :=
  match s with
  | [::] => s
  | [:: _] => s
  | _ => let '(s1, s2) := split s in
         merge (sort s1) (sort s2)
  end.
disp:()%type
T:orderType disp
s:seq T
sort:forall s0, (size s0 < size s)%coq_nat -> seq T
H0:[::] <> s
H:forall wildcard' : T, [:: wildcard'] <> s
s1, s2:seq T
Heq_anonymous:(s1, s2) = split s

(size s1 < size s)%coq_nat
disp:()%type
T:orderType disp
s:seq T
sort:forall s0, (size s0 < size s)%coq_nat -> seq T
H0:[::] <> s
H:forall wildcard' : T, [:: wildcard'] <> s
s1, s2:seq T
Heq_anonymous:(s1, s2) = split s

1 < size s
by case: s sort H0 H Heq_anonymous=> // x1 [] // _ _ /(_ x1). Qed.
disp:()%type
T:orderType disp
s:seq T
sort:forall s0, (size s0 < size s)%coq_nat -> seq T
H0:[::] <> s
H:forall wildcard' : T, [:: wildcard'] <> s
s1, s2:seq T
Heq_anonymous:(s1, s2) = split s

(size s2 < size s)%coq_nat
disp:()%type
T:orderType disp
s:seq T
sort:forall s0, (size s0 < size s)%coq_nat -> seq T
H0:[::] <> s
H:forall wildcard' : T, [:: wildcard'] <> s
s1, s2:seq T
Heq_anonymous:(s1, s2) = split s

1 < size s
by case: s sort H0 H Heq_anonymous=> // x1 [] // _ _ /(_ x1). Qed.
disp:()%type
T:orderType disp
s:seq T
sort:forall s0, (size s0 < size s)%coq_nat -> seq T
H:T
H0:seq T
H1:T
H2:seq T

(forall wildcard' : T, [:: wildcard'] <> [:: H, H1 & H2]) /\ [::] <> [:: H, H1 & H2]
by []. Qed. End MergeSortDef.

Example: using orderType instances

Section MergeSortTest.

= [:: 1; 2; 3; 4; 5; 6] : seq Order.NatOrder.orderType
= [:: 1; 2; 3; 4; 5; 6] : seq Order.NatOrder.orderType
= [:: 1; 2; 3; 4; 5; 6] : seq Order.NatOrder.orderType
End MergeSortTest. Section MergeSortCorrect. Context {disp : unit} {T : orderType disp}. Implicit Types s t : seq T.

(Optional) exercise

disp:()%type
T:orderType disp
s:seq T

sorted <=%O (sort s)
disp:()%type
T:orderType disp
s:seq T

sorted <=%O (sort s)
Admitted. End MergeSortCorrect. End Merge.

Acc-predicate

Let's see why Merge.sort works:

Merge.sort = fun (disp : ()) (T : orderType disp) => Fix_sub (seq T) (MR lt (fun recarg : seq T => let s := recarg in size s)) Merge.sort_obligation_4 (fun recarg : seq T => let s := recarg in seq T) (fun (recarg : seq T) (sort' : forall recarg' : {recarg' : seq T | ((let s := recarg' in size s) < (let s := recarg in size s))%coq_nat}, let s := (@sval) (seq T) (fun recarg'0 : seq T => ((let s := recarg'0 in size s) < (let s := recarg in size s))%coq_nat) recarg' in seq T) => let s := recarg in let sort := fun (s0 : seq T) (recproof : (size s0 < size s)%coq_nat) => sort' (exist (fun recarg' : seq T => ((let s1 := recarg' in size s1) < (let s1 := recarg in size s1))%coq_nat) s0 recproof) in let program_branch_0 := fun=> s in let program_branch_1 := fun wildcard' : T => fun=> s in let program_branch_2 := fun (wildcard' : seq T) (H : (forall wildcard'0 : T, [:: wildcard'0] <> wildcard') /\ [::] <> wildcard') (Heq_s : wildcard' = s) => let filtered_var := Merge.split s in let program_branch_2 := fun (s1 s2 : seq T) (Heq_anonymous : (s1, s2) = filtered_var) => Merge.merge (sort s1 ((fun (s0 : seq T) (sort0 : forall ..., ...%coq_nat -> ...) (wildcard'0 : seq T) (H0 : (...) /\ [::] <> wildcard'0) (Heq_s0 : wildcard'0 = s0) => let filtered_var0 := Merge.split s0 in fun s3 s4 : ... => [eta Merge.sort_obligation_1 sort0 H0 Heq_s0 (s2:=s4)]) s sort wildcard' H Heq_s s1 s2 Heq_anonymous)) (sort s2 ((fun (s0 : seq T) (sort0 : forall ..., ...%coq_nat -> ...) (wildcard'0 : seq T) (H0 : (...) /\ [::] <> wildcard'0) (Heq_s0 : wildcard'0 = s0) => let filtered_var0 := Merge.split s0 in fun s3 s4 : ... => [eta Merge.sort_obligation_2 sort0 H0 Heq_s0 (s2:=s4)]) s sort wildcard' H Heq_s s1 s2 Heq_anonymous)) in (let '(s1, s2) as anonymous' := filtered_var return (anonymous' = filtered_var -> seq T) in program_branch_2 s1 s2) (erefl filtered_var) in match s as s' return (s' = s -> seq T) with | [::] => program_branch_0 | wildcard' :: l => match l as l0 return (wildcard' :: l0 = s -> seq T) with | [::] => program_branch_1 wildcard' | s0 :: l0 => program_branch_2 [:: wildcard', s0 & l0] ((fun s1 : seq T => fun=> (fun H : T => fun=> (fun H1 : T => [eta Merge.sort_obligation_3 H H1]))) s sort wildcard' l s0 l0) end end (erefl s)) : forall (disp : ()) (T : orderType disp), seq T -> seq T Arguments Merge.sort {disp T} _%seq_scope
Fix_sub = fun (A : Type) (R : A -> A -> Prop) (Rwf : well_founded R) (P : A -> Type) (F_sub : forall x : A, (forall y : {y : A | R y x}, P ((@sval) A (R^~ x) y)) -> P x) (x : A) => Fix_F_sub A R P F_sub x (Rwf x) : forall (A : Type) (R : A -> A -> Prop), well_founded R -> forall P : A -> Type, (forall x : A, (forall y : {y : A | R y x}, P ((@sval) A (R^~ x) y)) -> P x) -> forall x : A, P x Arguments Fix_sub _%type_scope _%function_scope _ (_ _)%function_scope _
Fix_F_sub = fun (A : Type) (R : A -> A -> Prop) (P : A -> Type) (F_sub : forall x : A, (forall y : {y : A | R y x}, P ((@sval) A (R^~ x) y)) -> P x) => fix Fix_F_sub (x : A) (r : Acc R x) {struct r} : P x := F_sub x (fun y : {y : A | R y x} => Fix_F_sub ((@sval) A (R^~ x) y) (Acc_inv r (proj2_sig y))) : forall (A : Type) (R : A -> A -> Prop) (P : A -> Type), (forall x : A, (forall y : {y : A | R y x}, P ((@sval) A (R^~ x) y)) -> P x) -> forall x : A, Acc R x -> P x Arguments Fix_F_sub _%type_scope (_ _ _)%function_scope _ _
Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop := Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x Arguments Acc [A]%type_scope _%function_scope _ Arguments Acc_intro [A]%type_scope [R]%function_scope _ _%function_scope

Acc R x can be read as "x is accessible under relation R if all elements staying in relation R with it are also accessible"

Coq allows us do structural recursion on a term of type Acc which lives in Prop while building a term of a type living in Type. (structural recursion involves pattern-matching). But the accessibility predicate is defined to be non-informative (one constructor!).

This allows one do lots of interesting stuff, including to counting up

Accessibility predicate on natural numbers

Section AccFrom.

Variable (p : pred nat).

The acc_from predicate lets us count up: we are not allowed to use acc_from to drive computation (extract information from proofs of propositions to make computationally relevant terms), but you can define a recursive function from a type like this to a type in Type and the termination checker is totally (pun intended) happy with it. We'll see this sort of example at the end.

Inductive acc_from i : Prop :=
| AccNow of p i
| AccLater of acc_from i.+1.

End AccFrom.

Check out the corresponding induction principle.

acc_from_ind : forall [p : pred nat] [P : nat -> Prop], (forall i : nat, p i -> P i) -> (forall i : nat, acc_from p i.+1 -> P i.+1 -> P i) -> forall i : nat, acc_from p i -> P i acc_from_ind is not universe polymorphic Arguments acc_from_ind [p] [P]%function_scope (_ _)%function_scope [i]%nat_scope _ acc_from_ind is transparent Expands to: Constant SerTop.acc_from_ind

Simple examples

Section SimpleExamples.

Let's do a couple of proofs to get the gist of acc_from

  1. The property of "being equal to 42" is accessible from 0:

acc_from (eq_op^~ 42) 0

acc_from (eq_op^~ 42) 0

acc_from (eq_op^~ 42) 42
by apply: AccNow. Qed.
  1. But it's inaccessible from 43:

acc_from (eq_op^~ 42) 43 -> False

acc_from (eq_op^~ 42) 43 -> False

If you start proving the current goal directly, you will quickly get stuck because your goal is too specialised. Clearly, you need induction over the accessibility predicate, but elim messes up your base case (look at the type of acc_from_ind).


forall i : nat, i == 42 -> False

forall i : nat, acc_from (eq_op^~ 42) i.+1 -> False -> False
(fun __top_assumption_ : acc_from (eq_op^~ 42) 43 => (fun (_evar_0_ : forall i : nat, (eq_op^~ 42) i -> (fun=> False) i) (_evar_0_0 : forall i : nat, acc_from (eq_op^~ 42) i.+1 -> (fun=> False) i.+1 -> (fun=> False) i) => acc_from_ind _evar_0_ _evar_0_0 __top_assumption_) ?Goal ?Goal0)

forall i : nat, i == 42 -> False

forall i : nat, acc_from (eq_op^~ 42) i.+1 -> False -> False
(* the first subgoal is unprovable *) Abort.

We could try and create a more useful induction principle for our case but we might as well just use a low-level tactic fix which translates directly to Gallina's fixed-point combinator.


acc_from (eq_op^~ 42) 43 -> False

acc_from (eq_op^~ 42) 43 -> False
inacc:acc_from (eq_op^~ 42) 43 -> False

acc_from (eq_op^~ 42) 43 -> False
(fix inacc (H : acc_from (eq_op^~ 42) 43) : False := ?Goal H)
inacc:acc_from (eq_op^~ 42) 43 -> False

acc_from (eq_op^~ 42) 43 -> False

To recursively call inacc on a structurally smaller argument we need to case analyse the top of the goal stack:

inacc:acc_from (eq_op^~ 42) 43 -> False

43 == 42 -> False
inacc:acc_from (eq_op^~ 42) 43 -> False
acc_from (eq_op^~ 42) 44 -> False

The base case is easy now:

inacc:acc_from (eq_op^~ 42) 43 -> False

43 == 42 -> False
inacc:acc_from (eq_op^~ 42) 43 -> False
acc_from (eq_op^~ 42) 44 -> False
inacc:acc_from (eq_op^~ 42) 43 -> False

acc_from (eq_op^~ 42) 44 -> False

But here we are stuck.

Abort.

So we generalize the goal to make the proof go through.


forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> False

forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> False
inacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> False

forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> False
(fix inacc (x : nat) (H : 42 < x) (H0 : acc_from (eq_op^~ 42) x) {struct H0} : False := ?Goal x H H0)
inacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> False

forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> False
inacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> False
x:nat
x_gt42:42 < x

acc_from (eq_op^~ 42) x -> False
inacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> False
x:nat
x_gt42:42 < x
E:x = 42

False
inacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> False
x:nat
x_gt42:42 < x
acc_from (eq_op^~ 42) x.+1 -> False
inacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> False
x:nat
x_gt42:42 < x
E:x = 42

False
inacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> False
x:nat
x_gt42:42 < x
acc_from (eq_op^~ 42) x.+1 -> False
inacc:forall x : nat, 42 < x -> acc_from (eq_op^~ 42) x -> False
x:nat
x_gt42:42 < x

acc_from (eq_op^~ 42) x.+1 -> False
x:nat
x_gt42:42 < x

42 < x.+1
by apply: (ltn_trans x_gt42). Qed. End SimpleExamples.

Getting a concrete value from an abstract existence proof

Section Find.

Variable p : pred nat.

p:pred nat

(exists n : nat, p n) -> {m : nat | p m}
p:pred nat

(exists n : nat, p n) -> {m : nat | p m}
p:pred nat
exp:exists n : nat, p n

{m : nat | p m}
p:pred nat
exp:exists n : nat, p n

acc_from p 0
p:pred nat
exp:exists n : nat, p n
acc_from p 0 -> {m : nat | p m}

acc_from lives in Prop, so we are allowed to destruct exp in this context, see below.

p:pred nat
exp:exists n : nat, p n

acc_from p 0
p:pred nat
exp:exists n : nat, p n
acc_from p 0 -> {m : nat | p m}
p:pred nat
n:nat

p n -> acc_from p 0
p:pred nat
exp:exists n : nat, p n
acc_from p 0 -> {m : nat | p m}
p:pred nat
n:nat

p (n + 0) -> acc_from p 0
p:pred nat
exp:exists n : nat, p n
acc_from p 0 -> {m : nat | p m}
p:pred nat
j:nat

p (0 + j) -> acc_from p j
p:pred nat
n:nat
IHn:forall n0 : nat, p (n + n0) -> acc_from p n0
j:nat
p (n.+1 + j) -> acc_from p j
p:pred nat
exp:exists n : nat, p n
acc_from p 0 -> {m : nat | p m}
p:pred nat
j:nat

p (0 + j) -> acc_from p j
p:pred nat
n:nat
IHn:forall n0 : nat, p (n + n0) -> acc_from p n0
j:nat
p (n.+1 + j) -> acc_from p j
p:pred nat
exp:exists n : nat, p n
acc_from p 0 -> {m : nat | p m}
p:pred nat
n:nat
IHn:forall n0 : nat, p (n + n0) -> acc_from p n0
j:nat

p (n.+1 + j) -> acc_from p j
p:pred nat
exp:exists n : nat, p n
acc_from p 0 -> {m : nat | p m}
p:pred nat
n:nat
IHn:forall n0 : nat, p (n + n0) -> acc_from p n0
j:nat

p (n + j.+1) -> acc_from p j
p:pred nat
exp:exists n : nat, p n
acc_from p 0 -> {m : nat | p m}
p:pred nat
n:nat
IHn:forall n0 : nat, p (n + n0) -> acc_from p n0
j:nat
p0:p (n + j.+1)

acc_from p j.+1
p:pred nat
exp:exists n : nat, p n
acc_from p 0 -> {m : nat | p m}
p:pred nat
n, j:nat
p0:p (n + j.+1)

p (n + j.+1)
p:pred nat
exp:exists n : nat, p n
acc_from p 0 -> {m : nat | p m}
p:pred nat
exp:exists n : nat, p n

acc_from p 0 -> {m : nat | p m}
p:pred nat
exp:exists n : nat, p n

forall n : nat, acc_from p n -> {m : nat | p m}
p:pred nat
exp:exists n : nat, p n
find_ex:forall n : nat, acc_from p n -> {m : nat | p m}
m:nat
IHm:acc_from p m

{m : nat | p m}
p:pred nat
exp:exists n : nat, p n
find_ex:forall n : nat, acc_from p n -> {m : nat | p m}
m:nat
IHm:acc_from p m
pm:p m = true

{m : nat | p m}
p:pred nat
exp:exists n : nat, p n
find_ex:forall n : nat, acc_from p n -> {m : nat | p m}
m:nat
IHm:acc_from p m
pm:p m = false
{m : nat | p m}
p:pred nat
exp:exists n : nat, p n
find_ex:forall n : nat, acc_from p n -> {m : nat | p m}
m:nat
IHm:acc_from p m
pm:p m = true

{m : nat | p m}
p:pred nat
exp:exists n : nat, p n
find_ex:forall n : nat, acc_from p n -> {m : nat | p m}
m:nat
IHm:acc_from p m
pm:p m = false
{m : nat | p m}
p:pred nat
exp:exists n : nat, p n
find_ex:forall n : nat, acc_from p n -> {m : nat | p m}
m:nat
IHm:acc_from p m
pm:p m = false

{m : nat | p m}
p:pred nat
exp:exists n : nat, p n
m:nat
IHm:acc_from p m
pm:p m = false

acc_from p m.+1

Observe we can only destruct IHm at this point where we are tasked with building a proof and not a computationally relevant term.

p:pred nat
exp:exists n : nat, p n
m:nat
pm:p m = false

p m -> acc_from p m.+1
p:pred nat
exp:exists n : nat, p n
m:nat
pm:p m = false
acc_from p m.+1 -> acc_from p m.+1
p:pred nat
exp:exists n : nat, p n
m:nat
pm:p m = false

p m -> acc_from p m.+1
p:pred nat
exp:exists n : nat, p n
m:nat
pm:p m = false
acc_from p m.+1 -> acc_from p m.+1
p:pred nat
exp:exists n : nat, p n
m:nat
pm:p m = false

acc_from p m.+1 -> acc_from p m.+1
by []. Defined.